Основные методы интегрирования

Эта статья входит в число готовых статей
Наука
Математика
Область математикиОбласть математики
Тема Интеграл
Предмет изучения основные методы интегрирования
Период зарождения XVII век
Основные направления математика
математический анализ
Вспомогат. дисциплины алгебра, геометрия, математический анализ

Основные ме́тоды интегри́рования — способы нахождения всех первообразных любой функции[1].

Непосредственное интегрирование

Непосредственное интегрирование — метод, при котором интеграл путём тождественных преобразований подынтегральной функции (или выражения) приводится к одному или нескольким интегралам элементарных функций. Тождественные преобразования строятся на применении свойств интеграла, таких как вынесение константы за знак интеграла или разложение интеграла суммы на сумму интегралов. Затем применяется таблица интегралов элементарных функций[2].

Обычно подобные преобразования во время интегрирования выполняются устно, записывая лишь полученный результат интегрирования.

Внесение под знак дифференциала (метод подстановки)

Данный метод состоит в использовании свойств дифференциала для приведения подынтегрального выражения к табличной форме. Подынтегральное выражение преобразовывается в функцию вида . Предположим, что существует такой неопределённый интеграл , где подынтегральная функция непрерывна. Пусть , тогда если вычислить дифференциал, то получится . Таким образом , что после обратной замены равно [1][2].

Пример: Найти .

Решение: Пусть , тогда , а . Таким образом, Вынеся дробь за знак интеграла и применив обратную замену, найдем чему он будет равен с помощью таблицы интегралов:

Интегрирование по частям

Пусть и Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle v=v(x)} , тогда справедлива формула интегрирования по частям[2][3]:

или

Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle \int uv\prime dx=uv-\int vu\prime dx}

Пример: Найти Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle \int (x+3)e^{x}dx}

Решение: Пусть , а Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle dv=e^{x}dx} . Тогда Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle du=dx} , a . Подставив в формулу получим:

Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle \int (x+3)e^{x}dx=(x+3)e^{x}-\int e^{x}dx=(x+3)e^{x}-e^{x}+C=(x+2)+C} .

Интегрирование дробно-рациональных функций

Метод заключается разложении рациональной дроби на сумму простейших дробей[3].

Предположим, что существует функция Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle f(x)={\frac {P_{m}(x)}{Q_{n}(x)}}} , где  — многочлен степени , a Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle Q_{n}(x)}  — многочлен степени .

Степень числителя больше или равна степени знаменателя

В таком случае надо выделить целую часть делением числителя на знаменатель , то есть представить дробь в виде:

Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle {\frac {P_{m}(x)}{Q_{n}(x)}}=G(x)+{\frac {P_{v}(x)}{Q_{n}(x)}}} , где Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle v<n} .

Степень числителя меньше степени знаменателя

В этом случае надо сначала разложить знаменатель на линейные и квадратные множители: Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle Q(x)=(x-a)^{k}...(x^{2}+px+q)^{t}} , где многочлен Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle x^{2}+px+q} не имеет действительных корней[3].

Множителю соответствует простейших дробей вида:

Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle {\frac {A_{1}}{x-a}}+{\frac {A_{2}}{(x-a)^{2}}}+...+{\frac {A_{k}}{(x-a)^{k}}}} ,

а множителю соответствует простейших дробей вида:

Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle {\frac {B_{1}x+C_{1}}{x^{2}+px+q}}+{\frac {B_{2}x+C_{2}}{(x^{2}+px+q)^{2}}}+...+{\frac {B_{t}x+C_{t}}{(x^{2}+px+q)^{t}}}} ,

где Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle A_{i},B_{j},C_{j}}  — произвольные постоянные, а и Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle j=1,2,...,t} .

Находим коэффициенты Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle A_{i},B_{j},C_{j}} , и в результате интеграл сведётся к интегралу суммы многочлена и простейших дробей[3]:

Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle \int {\frac {A_{1}}{x-a}}+{\frac {A_{2}}{(x-a)^{2}}}+...+{\frac {A_{k}}{(x-a)^{k}}}+{\frac {B_{1}x+C_{1}}{x^{2}+px+q}}+{\frac {B_{2}x+C_{2}}{(x^{2}+px+q)^{2}}}+...+{\frac {B_{t}x+C_{t}}{(x^{2}+px+q)^{t}}}dx}

Пример: Найти Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle \int {\frac {3x-1}{(x+2)(x+1)}}dx}

Решение: Разложим дробь на сумму простейших, приведём к общему знаменателю и затем приравняем числители полученных дробей:

Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle 3x-1=A(x+1)+B(x+2)} .

Найдем коэффициенты и :

Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle 3x-1=Ax+A+Bx+2B}

отсюда получим систему линейных уравнений Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle {\begin{cases}A+B=3\\A+2B=-1\end{cases}}} ,

откуда Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle A=7} и .

Таким образом интеграл примет вид:

Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle \int {\frac {3x-1}{(x+2)(x+1)}}dx=\int {\frac {7}{x+2}}-{\frac {4}{x+1}}dx} .

Интегрирование тригонометрических функций

Интегралы вида Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle \int \sin {ax}\cos {bx}dx,\int \sin {ax}\sin {bx}dx,\int \cos {ax}\cos {bx}dx(a\neq b)} находятся с помощью формул[1][3]:

  1. Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle \sin {ax}\sin {bx}={\frac {1}{2}}(\cos(a-b)x-\cos(a+b)x)}
  2. Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle \cos {ax}\cos {bx}={\frac {1}{2}}(\cos(a-b)x+\cos(a+b)x)}

Пример: Найти .

Решение: воспользуемся первой тригонометрической формулой:

Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle \int \sin {5x}\cos {3x}dx=\int {\frac {1}{2}}(\sin(5-3)x+\sin(5+3)x)dx}

Далее, используя свойства дифференциала, получим сумму интегралов следующего вида:

Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle {\frac {1}{2}}\int \cos(8x)dx+{\frac {1}{2}}\int \sin(2x)dx}

Что будет равно:

Интегралы вида Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle \int \sin ^{2n+1}xdx,\int \cos ^{2n+1}xdx} , где n — натуральное число, находятся внесением под знак дифференциала (заменой переменной) или Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle \cos x} [1][3].

Пример: найти Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle \int \sin ^{5}xdx} .

Решение: Разложим синус пятой степени на произведение синуса четвёртой степени и синуса первой степени:

Представим синус четвёртой степени в виде разности единицы и косинуса с помощью основного тригонометрческого тождества и сразу внесём косинус под знак дифференциала. Получим:

Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle \int \sin ^{4}x\sin xdx=-\int (1-\cos ^{2}x)^{2}d(\cos x)}

Разложим квадрат разности по формуле сокращенного умножения и найдем интеграл от каждого слагаемого:

Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle -\int (1-\cos ^{2}x)^{2}d(\cos x)=-\int (1-2\cos ^{2}x+\cos ^{4}x)d(\cos x)=-\cos x+{\frac {2}{3}}\cos ^{2}x-{\frac {1}{5}}\cos ^{5}x+C}

Интегралы вида , где n — натуральное число, находятся с помощью тригонометрических формул понижения степени и дальнейшим внесением переменной под знак дифференциала[1][3].

Пример: найти Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle \int \cos ^{4}xdx} .

Решение: понизим степень косинуса с помощью формулы понижения степени и разложим квадрат числителя по формуле сокращенного умножения:

Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle \int \cos ^{4}xdx=\int {\biggl (}{\frac {1+\cos 2x}{2}}{\biggr )}^{2}dx=\int {\biggl (}{\frac {1+2\cos 2x+\cos ^{2}2x}{2}}{\biggr )}dx}

Далее приводим интеграл суммы к виду суммы интегралов, вносим 2х под знак дифференциала во втором интеграле, а в третьем еще раз применяем формулу понижения степени и вносим 4х под знак дифференциала:

Находим сумму интегралов:

Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle {\frac {3}{8}}x+{\frac {1}{4}}\sin(2x)+{\frac {1}{32}}\sin(4x)+C}

Чтобы найти интеграл вида Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle \int \sin ^{m}x\cos ^{n}xdx} , где и  — рациональные числа, применяют подстановку или Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle t=\sin x} , сводят к интегралу от дифференциального бинома и в зависимости от структуры последнего берётся или нет[1][3].

Примечания

  1. 1,0 1,1 1,2 1,3 1,4 1,5 Богданова Е. А., Богданов С. Н., Богданов П. С. Основные методы интегрирования функций одной переменной. — Самара: СФ ГАОУ ВО МГПУ, 2021. — С. 5. — 78 с. — ISBN 978-5-6045663-1-2.
  2. 2,0 2,1 2,2 Круглов Е. В., Таланова Е. А. Основные методы вычисления интегралов. — Нижний Новгород: Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, 2019. — 50 с.
  3. 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 Белоусова В. И., Ермакова Г. М., Михалева М. М., Чуксина Н. В., Шестакова И. А. Высшая математика Часть II. — Екатеринбург: Издательство Уральского университета, 2017. — 300 с. — ISBN 978-5-7996-2028-8.